

2012 - Training documents

About the Kinematic Data

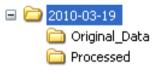
- Here we discuss how to process GNSS observations recorded directly on the receiver SD card (or on any other basic recording devices).
- Typically, this data are simply raw GNSS data files (Observations&Orbits), as opposed to data collected with survey software that provides different metadata information (in addition to Raw GNSS data files).

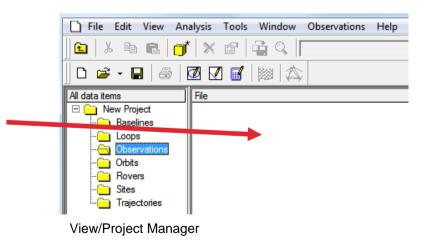
What is a Trajectory in EZSurv[™]

- A trajectory is <u>the combination of a static (Base Station) and a</u> <u>kinematic (rover) data file that are recorded simultaneously.</u> These observation data set allow differential post-processing.
- The well-known RTK mode is simply a trajectory computed in real-time in differential positioning mode. <u>In that respect, the</u> <u>Post-Processor can be seen as an RTK offline application</u>

In EZSurv[™] a kinematic data file is known as a **«Rover»** file

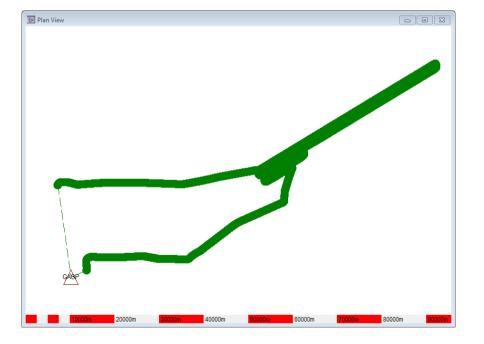
Trajectory Data


- <u>Static</u> (Base Station) file can be from a Base Station providers (public or private) or can come from data collected by the user on a known marker (private Base Station). This file can be in a binary or RINEX format.
- <u>Kinematic</u> (Rover) file is from a binary file recorded directly on your receiver SD card (or on any other device).
- Although you can create manually a trajectory, <u>simultaneous datasets are automatically</u> <u>recognized by EZSurv</u>[™]. There is no need to specify matching files (static and kinematic).



Importing Observation Files

• It is suggested to manage data collection on a daily basis. Each daily folder should contain a subfolder for the original data files collected on the field and another one for the post-processing project files.


- Transfer your GNSS data files to your PC and if required your Base Station observation file.
- Select Observations > Import... or simply drag and drop your files into the observations folder of the Post-Processor.
- If needed set your kinematic antenna model

View your Data in a PlanView

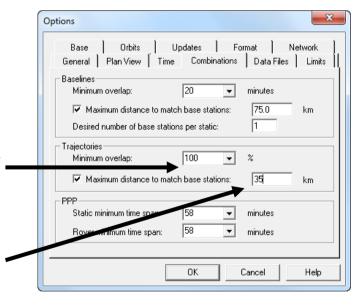
All your data (static and kinematic) can be seen in a Plan View from the main menu View/Plan or Press [F4]

Configuring Base Station Providers

- Select **Options...** from the **Tools** menu.
- Select the Base tab. Click Add... to add a GNSS Base Station provider. Select a provider from the list and click OK.
- Type the user name and password if required *(commercial providers).*
- Click **Properties...** to retrieve the information about the selected base station provider (*You can have info for every single base station of the provider*).

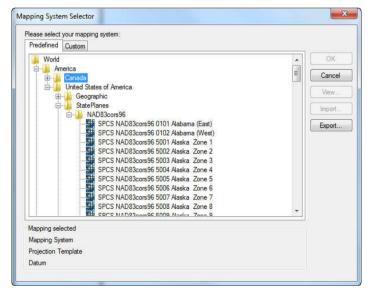
See «Base Station Setting» Training Module for more details

To be done only once


Options		×
Base Base station p	Plan View Time Combinations Data F Orbits Updates Format Loop ioviders: Reasources Naturelles Duebec (MBNF1	
	BEE Permanent Network (EPN)	Bemove
dd Base Station Providers Please select your new provider <u>Pluration Annoten Records (FS Network (ARISN)</u> Braal - Red Brasileira dd Monitoamento Continuo (RBM Canada - Engis Geo Solutions Canada - Pleades Data Corp. France - Reseau (NSS Permanent (RGP)	(C)	Properties Move.Up Move.Down
Germany - Integrietes geodatisches Referenzietz (GRE Japan - Geotrik Local or network folder South Africe - IngNet Umled States - Continuously Operating Reference Statis Umled States - MODI Continuously Operating Reference Umled States - NODI Continuously Operating Reference United States - Oregon Real-Time GPS Network (ORGN	Canada - Min. Ressources Naturelles Quebec (Mf Base stations:	Select All
· · · · · · · · · · · · · · · · · · ·	1	1 MB
	Amount of disk space to use:	MB Clear

To be done only once

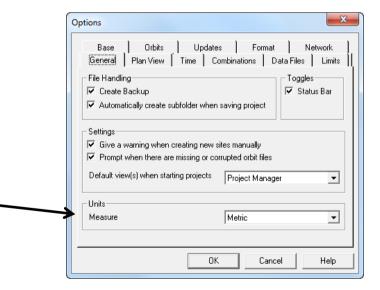
Configuring Trajectories Parameters


- EZSurv[™] generates automatically all trajectories using field metadata («start and end time» of each observation file, as well as their status, Base and Rover)
- Select the Combinations tab from Tools > Options. In the Trajectories section, set the percentage of data coverage of your rover by the Base (typically we look for 100%)
- Also make sure that Maximum distance option is checked and input a proper distance tolerance (maximum distance between rover and base)

Set your Mapping System/datum

- Set your mapping coordinates using the Mapping Systems dialog, under Tools > Mapping Systems > Selector from the main menu.
- From this dialog, you can select an existing mapping system. You can create new ones using Tools > Mapping Systems > Editor, these new mapping systems will be available under the Custom Tab of the Tools > Mapping Systems > Selector

See the «Mapping Systems» training Module.



>

To be done only once

Configuring Unit of Measure

- Usually, this has to be done once if the user always uses the same reference system.
- Select the General tab from the Tools > Options. In the Units section, select your unit of measure (International Feet, Metric or US Survey Feet).

To be done only once

Configuring the Process Parameters

See the «Default Parameters» training Module to properly set your process parameters:

- Constellation (GPS or GPS&GLONASS)
- Process interval
- Ambiguity fixing mode
- Base Station search
- Precise orbits
- Etc.

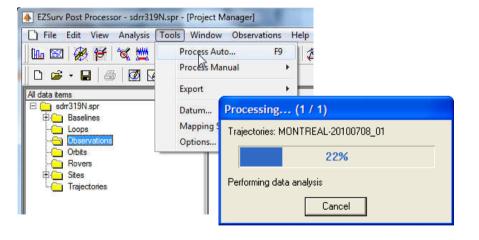
Process Parameters	? ×
Differential Process Parameters Solution Parameters GNSS Constellations GPS (G) GLONASS (R) Process Interval C Use data interval C Use data interval C User 1	Cutoff Parameters Mask angle < 10
	OK Cancel User Default

11

Set Local Base Station (*if not using Base Station Providers*)

- If you operate your own GNSS base station in the field, simply drag and drop this observation file into the observation folder of the Post-Processor.
- Make sure that your Base station file is set as a "Base" (select the "Base" status using the *right click* and select "base").
- Go to the Site Editor using Edit > Site. Enter its coordinate (make sure you are using the proper datum).

ite Name B	aseStation		•		Rename Sit
Site Information	locupation	s			
Site Processing 0					
Use as referen Compute avera			neition		Edit Sigma:
Location	igen single	point p	DSIGOT		
Mapping Sys	tem N4	AD83c9	602	-	
Site Coordinate	s				
Latitude	29	32 3	33.57096	N]
Longitude	89	33 5	53.18075	w •	1
Ell. Height	14.326				m
	,		In	port	1
					1
Site Undulation	g2000c00	ı			
Undulation	-30.867				m
MSI	45.193				
M.S.L.	J40.100				m


See the «Base Station Settings» training Module

Processing Kinematic Files

Select **Process Auto...** from the **Tools** menu to start the GNSS post-processing (or press **F9** on the keyboard). The following steps are performed automatically:

- > scan for base stations.
- > merge base data (if required).
- > define trajectories/baselines.
- > post-process the data.

Processing Kinematic Files

The **Process Summary** is displayed once the GNSS post-processing is completed.

ast Processed	▼
ST PROCESS SUMMARY	
Processing Date Mapping System Projection Template	<pre> c:\test\demoservicehydrographique\datalucshc\processor\20120216.SFR 2012/02/16 16:43:04.39 (UTC) UTM NAD83csrs Automatic Universal Transverse Mercator, Automatic (UTM-A) NAD83 - Canadian Spatial Reference System <none> </none></pre>
AJECTORIES	
Base Station X Y	GASP 390890.489 m 5409539.481 m
Base Station X	GASP 390890.489 m 5409539.481 m 27.990 m 0.000 m 27.990 m 0.9997463
Base Station X Y Undulation Mean Sea Level Central Meridian	GASP 300890.489 m 5409539.481 m 27.990 m 0.000 m 27.990 m 0.9997463 W 63° Number of epochs Number of sites Total Solved % Solved Total Fixed Float PSR Failed Unproc

Kinematic Results - Export

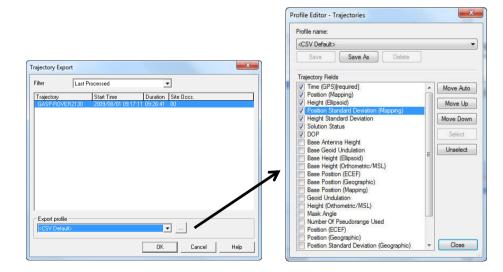
- Trajectory results (position of each epoch) can be exported in few predefined ASCII format:
 - □ ASCII brief geographic
 - □ ASCII brief Mapping
 - ASCII detailed geographic
 - ASCII detailed mapping
- It could also be exported in a custom CSV format
- The export is access through **Tools > Export > Trajectories...**

Kinematic Results – Export (ASCII Detailed mapping)

EZSURV(TM) v2.91 TRAJECTORY: GASP-ROVER2130	TRAJECTORY EPOCH FILE(detailed)
Project: c:\\datalucs Processing Date: 2012/06/09 20:3 Orbits: Broadcast Mapping System: UTM NAD83css 2 Datum: NAD83 - Canadia Geoid Model: <none></none>	37 (<u>UTC</u>) Clock Model: Broadcast
BASE STATION: GASP	[C:\\ <u>DataLucSHC</u> \BASE213.090]
	Antenna Height: 0.064 [Slant: 0.064] nds Antenna Model: LEIAT504* (m)
Lat: N 48 49 45.313724 Lat Lon: W 64 29 12.072080 Lon Hgt: 26.966 Hgt	D83 - Canadian Spatial <u>ReferUTM</u> NAD83csrs Automatic (m) t: N 48 49 45.274290 X: 390890.489 n: W 64 29 12.065755 Y: 5409539.481 t: 27.990
ROVER INFORMATION (ROVER2130)	[C:\\ <u>DataLucSHC</u> \ROVER2130.090]
Measurement Interval: 1.0 sec Antenna Height: 0.000 [Slant: TRAJECTORY RESULTS	: 0.000] Antenna Model: <none> (minametric</none>
Processing Interval: 1.0 second Time Interval: 2009/08/01 09:17: Observations: 284422	11 to 2020.08701 18:43:52 (UTC) [566 min.] Observations Used: 283774 [99.77%]
2009/08/01,09:17:11.00,10,10,3989 2009/08/01,09:17:12.00,6,1,39890	909.676,5428047.192,0.538,0.538,0.0304,0.0321,0.0617,1.7 38.508,5428048.206,0.530,0.530,0.0194,0.0204,0.0398,1.7 07.345,5428049.091,0.507,0.507,0.0166,0.0176,0.0342,1.7

	Code	Short name	Long name	Category			
	1	PSR	Pseudoranges (raw)	Pseudorange			
	4	L1	L1 (fixed)	Fixed			
	6	L3	L3 (fixed iono-free)	Fixed			
20.00	9	L1f	L1 (float)	Float			
	10	L3f	L3 (iono-free)	Float			
	C						

Solution code



Kinematic Results – CSV Export

CSV export can be configured as you want. All parameters related to a trajectory can be exported. You can configure a CSV output and save it using a profile

Tools > Export > Trajectories...

- Click on to access the Profile Editor
- Then select your parameters, order them using the «Move up» and «Move down»
- Save it under a specific name

Kinematic Results – CSV Export

	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
1	GPSWeek	GPSSecond	x	Y	EllHgt	StdDevX	StdDevY	StdDevHgt	Solution	NDOP	EDOP	VDOP	TDOP	HDOP	PDOP	GDOP
2	1542	551846	398909,676	5428047,192	0,538	0,030	0,032	0,062	L3 (iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
3	1542	551847	398908,508	5428048,206	0,530	0,019	0,020	0,040	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
4	1542	551848	398907,345	5428049,091	0,507	0,017	0,018	0,034	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
5	1542	551849	398906,250	5428049,936	0,499	0,017	0,018	0,035	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
6	1542	551850	398905,247	5428050,777	0,504	0,016	0,017	0,034	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
7	1542	551851	398904,346	5428051,627	0,517	0,017	0,018	0,035	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
8	1542	551852	398903,491	5428052,435	0,516	0,019	0,020	0,040	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
9	1542	551853	398902,644	5428053,178	0,509	0,020	0,021	0,041	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
10	1542	551854	398901,811	5428053,865	0,502	0,019	0,020	0,038	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
11	1542	551855	398901,054	5428054,506	0,502	0,016	0,017	0,033	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
12	1542	551856	398900,393	5428055,128	0,504	0,017	0,018	0,036	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
13	1542	551857	398899,842	5428055,715	0,511	0,015	0,016	0,031	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
14	1542	551858	398899,364	5428056,254	0,500	0,016	0,017	0,034	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
15	1542	551859	398898,899	5428056,749	0,504	0,016	0,017	0,033	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
16	1542	551860	398898,420	5428057,180	0,500	0,015	0,016	0,031	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
17	1542	551861	398897,988	5428057,599	0,506	0,015	0,016	0,031	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
18	1542	551862	398897,581	5428058,051	0,505	0,013	0,014	0,027	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
19	1542	551863	398897,205	5428058,544	0,514	0,013	0,014	0,027	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
20	1542	551864	398896,874	5428059,028	0,507	0,014	0,015	0,030	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
21	1542	551865	398896,529	5428059,549	0,486	0,013	0,013	0,026	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
22	1542	551866	398896,105	5428060,137	0,515	0,015	0,015	0,030	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
23	1542	551867	398895,660	5428060,787	0,515	0,015	0,016	0,031	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
24	1542	551868	398895,194	5428061,507	0,501	0,016	0,017	0,033	L3 (fixed iono-free)	0,60	0,57	1,29	0,76	0,83	1,53	1,71
25	1542	551869	398894 670	5428062 306	0 503	0.016	0.017	0.032	13 (fixed iono-free)	0.60	0 57	1 29	0.76	0.83	1 53	1 71

Kinematic – Saving your Project

 As previously mentioned, before saving your Post-Processor project, it is suggested to manage the survey files on a daily basis. Each daily folder should contain a subfolder for the GNSS observations and a subfolder to hold the post-processed project files. A Post-Processor project generates many files.

- Save your Post-Processor project (a location is proposed).
- The SPR file can be reopened any time to add more data, unless you move, delete some files of the project or you edit the folder path.
- To move your project to another folder or computer, create an archive. Select File > Archive Project...
- Select File > Open Archived Project... to reopen an archived project.

Kinematic Processing in Short

Few easy steps to get the job done

- •Import your kinematic data
- •Set your Base Station Provider parameters (or import your local base station data)
- •Launch the automatic processing (F9)
- •Export your corrected Positions

Few settings to be done once

- •The kinematic antenna model
- •Mapping system
- •Unit of measure
- •Process parameters
- «Base Rover» combination parameters